An Object-Based Volumetric Deformable Atlas for the Improved Localization of Neuroanatomy in MR Images
نویسندگان
چکیده
We present a hierarchical object–based deformable atlas, a promising new approach for the automatic localization and quantitative analysis of neuroanatomy in MR images. The 3D finite element-based elastic atlas combines the advantages of both volumetric– and surface– based deformable atlases in one single unifying framework. This multiresolution framework is not only capable of deforming entire volumes or subvolumes but can deform individual atlas objects, allowing greater and more effective use of object shape and local image feature information. Object surface representations are embedded in the volumetric deformable atlas and image-feature-derived forces acting on these surfaces are automatically transferred to the containing 3D finite element lattice. Consequently, spatial relationship constraints of the atlas objects are maintained via the elastic lattice while an object is deformed to match a target boundary. Atlas objects are deformed in a hierarchical fashion, begining with objects exhibiting well-defined image features in the target scan and proceeding to objects with slightly less well-defined features. Experiments involving several subcortical atlas objects are presented.
منابع مشابه
Generating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملSurface Based Atlas Matching of the Brain Using Deformable Surfaces and Volumetric Finite Elements
The automatic identification and localization of structures in magnetic resonance (MR) brain images are a major part of the processing work for the neuroradiologist in numerous clinical applications, such as functional mapping and surgical planning. To aid in this task, a considerable amount of research has been directed toward the development of 3D standardized atlases of the human brain (e.g....
متن کاملGenerating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method
Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کامل